Перевод: со всех языков на английский

с английского на все языки

hydraulic engineering tunnel

  • 1 гидротехнический тоннель

    Универсальный русско-английский словарь > гидротехнический тоннель

  • 2 прокладыватель тоннелей

    Русско-английский большой базовый словарь > прокладыватель тоннелей

  • 3 Brunel, Isambard Kingdom

    [br]
    b. 9 April 1806 Portsea, Hampshire, England
    d. 15 September 1859 18 Duke Street, St James's, London, England
    [br]
    English civil and mechanical engineer.
    [br]
    The son of Marc Isambard Brunel and Sophia Kingdom, he was educated at a private boarding-school in Hove. At the age of 14 he went to the College of Caen and then to the Lycée Henri-Quatre in Paris, after which he was apprenticed to Louis Breguet. In 1822 he returned from France and started working in his father's office, while spending much of his time at the works of Maudslay, Sons \& Field.
    From 1825 to 1828 he worked under his father on the construction of the latter's Thames Tunnel, occupying the position of Engineer-in-Charge, exhibiting great courage and presence of mind in the emergencies which occurred not infrequently. These culminated in January 1828 in the flooding of the tunnel and work was suspended for seven years. For the next five years the young engineer made abortive attempts to find a suitable outlet for his talents, but to little avail. Eventually, in 1831, his design for a suspension bridge over the River Avon at Clifton Gorge was accepted and he was appointed Engineer. (The bridge was eventually finished five years after Brunel's death, as a memorial to him, the delay being due to inadequate financing.) He next planned and supervised improvements to the Bristol docks. In March 1833 he was appointed Engineer of the Bristol Railway, later called the Great Western Railway. He immediately started to survey the route between London and Bristol that was completed by late August that year. On 5 July 1836 he married Mary Horsley and settled into 18 Duke Street, Westminster, London, where he also had his office. Work on the Bristol Railway started in 1836. The foundation stone of the Clifton Suspension Bridge was laid the same year. Whereas George Stephenson had based his standard railway gauge as 4 ft 8½ in (1.44 m), that or a similar gauge being usual for colliery wagonways in the Newcastle area, Brunel adopted the broader gauge of 7 ft (2.13 m). The first stretch of the line, from Paddington to Maidenhead, was opened to traffic on 4 June 1838, and the whole line from London to Bristol was opened in June 1841. The continuation of the line through to Exeter was completed and opened on 1 May 1844. The normal time for the 194-mile (312 km) run from Paddington to Exeter was 5 hours, at an average speed of 38.8 mph (62.4 km/h) including stops. The Great Western line included the Box Tunnel, the longest tunnel to that date at nearly two miles (3.2 km).
    Brunel was the engineer of most of the railways in the West Country, in South Wales and much of Southern Ireland. As railway networks developed, the frequent break of gauge became more of a problem and on 9 July 1845 a Royal Commission was appointed to look into it. In spite of comparative tests, run between Paddington-Didcot and Darlington-York, which showed in favour of Brunel's arrangement, the enquiry ruled in favour of the narrow gauge, 274 miles (441 km) of the former having been built against 1,901 miles (3,059 km) of the latter to that date. The Gauge Act of 1846 forbade the building of any further railways in Britain to any gauge other than 4 ft 8 1/2 in (1.44 m).
    The existence of long and severe gradients on the South Devon Railway led to Brunel's adoption of the atmospheric railway developed by Samuel Clegg and later by the Samuda brothers. In this a pipe of 9 in. (23 cm) or more in diameter was laid between the rails, along the top of which ran a continuous hinged flap of leather backed with iron. At intervals of about 3 miles (4.8 km) were pumping stations to exhaust the pipe. Much trouble was experienced with the flap valve and its lubrication—freezing of the leather in winter, the lubricant being sucked into the pipe or eaten by rats at other times—and the experiment was abandoned at considerable cost.
    Brunel is to be remembered for his two great West Country tubular bridges, the Chepstow and the Tamar Bridge at Saltash, with the latter opened in May 1859, having two main spans of 465 ft (142 m) and a central pier extending 80 ft (24 m) below high water mark and allowing 100 ft (30 m) of headroom above the same. His timber viaducts throughout Devon and Cornwall became a feature of the landscape. The line was extended ultimately to Penzance.
    As early as 1835 Brunel had the idea of extending the line westwards across the Atlantic from Bristol to New York by means of a steamship. In 1836 building commenced and the hull left Bristol in July 1837 for fitting out at Wapping. On 31 March 1838 the ship left again for Bristol but the boiler lagging caught fire and Brunel was injured in the subsequent confusion. On 8 April the ship set sail for New York (under steam), its rival, the 703-ton Sirius, having left four days earlier. The 1,340-ton Great Western arrived only a few hours after the Sirius. The hull was of wood, and was copper-sheathed. In 1838 Brunel planned a larger ship, some 3,000 tons, the Great Britain, which was to have an iron hull.
    The Great Britain was screwdriven and was launched on 19 July 1843,289 ft (88 m) long by 51 ft (15.5 m) at its widest. The ship's first voyage, from Liverpool to New York, began on 26 August 1845. In 1846 it ran aground in Dundrum Bay, County Down, and was later sold for use on the Australian run, on which it sailed no fewer than thirty-two times in twenty-three years, also serving as a troop-ship in the Crimean War. During this war, Brunel designed a 1,000-bed hospital which was shipped out to Renkioi ready for assembly and complete with shower-baths and vapour-baths with printed instructions on how to use them, beds and bedding and water closets with a supply of toilet paper! Brunel's last, largest and most extravagantly conceived ship was the Great Leviathan, eventually named The Great Eastern, which had a double-skinned iron hull, together with both paddles and screw propeller. Brunel designed the ship to carry sufficient coal for the round trip to Australia without refuelling, thus saving the need for and the cost of bunkering, as there were then few bunkering ports throughout the world. The ship's construction was started by John Scott Russell in his yard at Millwall on the Thames, but the building was completed by Brunel due to Russell's bankruptcy in 1856. The hull of the huge vessel was laid down so as to be launched sideways into the river and then to be floated on the tide. Brunel's plan for hydraulic launching gear had been turned down by the directors on the grounds of cost, an economy that proved false in the event. The sideways launch with over 4,000 tons of hydraulic power together with steam winches and floating tugs on the river took over two months, from 3 November 1857 until 13 January 1858. The ship was 680 ft (207 m) long, 83 ft (25 m) beam and 58 ft (18 m) deep; the screw was 24 ft (7.3 m) in diameter and paddles 60 ft (18.3 m) in diameter. Its displacement was 32,000 tons (32,500 tonnes).
    The strain of overwork and the huge responsibilities that lay on Brunel began to tell. He was diagnosed as suffering from Bright's disease, or nephritis, and spent the winter travelling in the Mediterranean and Egypt, returning to England in May 1859. On 5 September he suffered a stroke which left him partially paralysed, and he died ten days later at his Duke Street home.
    [br]
    Further Reading
    L.T.C.Rolt, 1957, Isambard Kingdom Brunel, London: Longmans Green. J.Dugan, 1953, The Great Iron Ship, Hamish Hamilton.
    IMcN

    Biographical history of technology > Brunel, Isambard Kingdom

  • 4 Bollée, Ernest-Sylvain

    [br]
    b. 19 July 1814 Clefmont (Haute-Marne), France
    d. 11 September 1891 Le Mans, France
    [br]
    French inventor of the rotor-stator wind engine and founder of the Bollée manufacturing industry.
    [br]
    Ernest-Sylvain Bollée was the founder of an extensive dynasty of bellfounders based in Le Mans and in Orléans. He and his three sons, Amédée (1844–1917), Ernest-Sylvain fils (1846–1917) and Auguste (1847-?), were involved in work and patents on steam-and petrol-driven cars, on wind engines and on hydraulic rams. The presence of the Bollées' car industry in Le Mans was a factor in the establishment of the car races that are held there.
    In 1868 Ernest-Sylvain Bollée père took out a patent for a wind engine, which at that time was well established in America and in England. In both these countries, variable-shuttered as well as fixed-blade wind engines were in production and patented, but the Ernest-Sylvain Bollée patent was for a type of wind engine that had not been seen before and is more akin to the water-driven turbine of the Jonval type, with its basic principle being parallel to the "rotor" and "stator". The wind drives through a fixed ring of blades on to a rotating ring that has a slightly greater number of blades. The blades of the fixed ring are curved in the opposite direction to those on the rotating blades and thus the air is directed onto the latter, causing it to rotate at a considerable speed: this is the "rotor". For greater efficiency a cuff of sheet iron can be attached to the "stator", giving a tunnel effect and driving more air at the "rotor". The head of this wind engine is turned to the wind by means of a wind-driven vane mounted in front of the blades. The wind vane adjusts the wind angle to enable the wind engine to run at a constant speed.
    The fact that this wind engine was invented by the owner of a brass foundry, with all the gear trains between the wind vane and the head of the tower being of the highest-quality brass and, therefore, small in scale, lay behind its success. Also, it was of prefabricated construction, so that fixed lengths of cast-iron pillar were delivered, complete with twelve treads of cast-iron staircase fixed to the outside and wrought-iron stays. The drive from the wind engine was taken down the inside of the pillar to pumps at ground level.
    Whilst the wind engines were being built for wealthy owners or communes, the work of the foundry continued. The three sons joined the family firm as partners and produced several steam-driven vehicles. These vehicles were the work of Amédée père and were l'Obéissante (1873); the Autobus (1880–3), of which some were built in Berlin under licence; the tram Bollée-Dalifol (1876); and the private car La Mancelle (1878). Another important line, in parallel with the pumping mechanism required for the wind engines, was the development of hydraulic rams, following the Montgolfier patent. In accordance with French practice, the firm was split three ways when Ernest-Sylvain Bollée père died. Amédée père inherited the car side of the business, but it is due to Amédée fils (1867– 1926) that the principal developments in car manufacture came into being. He developed the petrol-driven car after the impetus given by his grandfather, his father and his uncle Ernest-Sylvain fils. In 1887 he designed a four-stroke single-cylinder engine, although he also used engines designed by others such as Peugeot. He produced two luxurious saloon cars before putting Torpilleur on the road in 1898; this car competed in the Tour de France in 1899. Whilst designing other cars, Amédée's son Léon (1870–1913) developed the Voiturette, in 1896, and then began general manufacture of small cars on factory lines. The firm ceased work after a merger with the English firm of Morris in 1926. Auguste inherited the Eolienne or wind-engine side of the business; however, attracted to the artistic life, he sold out to Ernest Lebert in 1898 and settled in the Paris of the Impressionists. Lebert developed the wind-engine business and retained the basic "stator-rotor" form with a conventional lattice tower. He remained in Le Mans, carrying on the business of the manufacture of wind engines, pumps and hydraulic machinery, describing himself as a "Civil Engineer".
    The hydraulic-ram business fell to Ernest-Sylvain fils and continued to thrive from a solid base of design and production. The foundry in Le Mans is still there but, more importantly, the bell foundry of Dominique Bollée in Saint-Jean-de-Braye in Orléans is still at work casting bells in the old way.
    [br]
    Further Reading
    André Gaucheron and J.Kenneth Major, 1985, The Eolienne Bollée, The International Molinological Society.
    Cénomane (Le Mans), 11, 12 and 13 (1983 and 1984).
    KM

    Biographical history of technology > Bollée, Ernest-Sylvain

  • 5 Doane, Thomas

    [br]
    b. 20 September 1821 Orleans, Massachusetts, USA
    d. 22 October 1897 West Townsend, Massachusetts, USA
    [br]
    American mechanical engineer.
    [br]
    The son of a lawyer, he entered an academy in Cape Cod and, at the age of 19, the English Academy at Andover, Massachusetts, for five terms. He was then in the employ of Samuel L. Fenton of Charlestown, Massachusetts. He served a three-year apprenticeship, then went to the Windsor White River Division of the Vermont Central Railroad. He was Resident Engineer of the Cheshire Railroad at Walpote, New Hampshire, from 1847 to 1849, and then worked in independent practice as a civil engineer and surveyor until his death. He was involved with nearly all the railroads running out of Boston, especially the Boston \& Maine. In April 1863 he was appointed Chief Engineer of the Hoosac Tunnel, which was already being built. He introduced new engineering methods, relocated the line of the tunnel and achieved great accuracy in the meeting of the borings. He was largely responsible for the development in the USA of the advanced system of tunnelling with machinery and explosives, and pioneered the use of compressed air in the USA. In 1869 he was Chief Engineer of the Burlington \& Missouri River Railroad in Nebraska, laying down some 240 miles (386 km) of track in four years. During this period he became interested in the building of a Congregational College at Crete, Nebraska, for which he gave the land and which was named after him. In 1873 he returned to Charlestown and was again appointed Chief Engineer of the Hoosac Tunnel. At the final opening of the tunnel on 9 February 1875 he drove the first engine through. He remained in charge of construction for a further two years.
    [br]
    Principal Honours and Distinctions
    President, School of Civil Engineers.
    Further Reading
    Duncan Malone (ed.), 1932–3, Dictionary of American Biography, New York: Charles Scribner.
    IMcN

    Biographical history of technology > Doane, Thomas

  • 6 Brandt, Alfred

    [br]
    b. 3 September 1846 Hamburg, Germany
    d. 29 November 1899 Brig, Switzerland
    [br]
    German mechanical engineer, developer of a hydraulic rock drill.
    [br]
    The son of a Hamburg merchant, he studied mechanical engineering at the Polytechnikum in Zurich and was engaged in constructing a railway line in Hungary and Austria before he returned to Switzerland. At Airolo, where the Gotthard tunnel was to commence, he designed a hydraulic rock drill; the pneumatic ones, similar to the Ingersoll type, did not satisfy him. His drill consisted of two parts instead of three: the hydraulic motor and the installation for drilling. At the Sulzer company of Winterthur his first design, a percussion drill, in 1876, was developed into a rotary drill which worked with greatest success in the construction of various railway tunnels and also helped to reduce costs in the mining industry.
    His Hamburg-based firm Brandt \& Brandau consequently was soon engaged in many tunnelling and mining projects throughout Germany, as well as abroad. During the years 1883 and 1895 Brandt spent time in exploration in Spain and reopening the lead-mines in Posada. His most ambitious task was to co-operate in drafting the Simplon tunnel, the construction of which relied greatly on his knowledge and expertise. The works began several years behind schedule, in 1898, and consequently he was unable to see its completion.
    [br]
    Bibliography
    1877, "Beschreibung und Abbildung der Brandtschen Bohrmaschine", Eisenbahn 7 (13).
    Further Reading
    C.Matschoss, 1925, Manner der Technik, Berlin.
    G.E.Lucas, 1926, Der Tunnel. Anlage und Bau, Vol. 2, Berlin, pp. 49–55 (deals with his achievements in the construction of tunnels).
    WK

    Biographical history of technology > Brandt, Alfred

  • 7 для

    авиационное топливо для турбореактивных двигателей
    aviation turbine fuel
    ангар для воздушного судна
    aircraft shed
    аэродинамическая труба для испытаний на сваливание в штопор
    spin wind tunnel
    аэродинамическая труба для испытания моделей в натуральную величину
    full-scale wind tunnel
    аэродром для реактивных воздушных судов
    jet aerodrome
    аэродром для самолетов короткого взлета и посадки
    1. STOLport
    2. stolport аэродромная установка для запуска
    ground air starting unit
    база для обслуживания полетов
    air base
    бассейн для гидродинамических испытаний
    towing base
    бокс для испытания
    test box
    бригада для перегонки воздушных судов
    delivery group
    вал для передачи крутящего момента
    torsion shaft
    вентилятор для создания подъемной силы
    lift fan
    визир для определения сноса
    drift sight
    (в полете) воздушное судно для местный авиалиний
    short-range aircraft
    воздушное судно для местных авиалиний
    short-haul transport
    воздушное судно для обслуживания местных авиалиний
    feederliner
    воздушное судно для патрулирования лесных массивов
    forest patrol aircraft
    воздушное судно для полетов на большой высоте
    high-altitude aircraft
    воздушное судно для смешанных перевозок
    combination aircraft
    возрастной предел для пилота
    pilot retirement rule
    ВПП для эксплуатации любых типов воздушных судов
    all-service runway
    ВПП, не оборудованная для посадки по приборам
    noninstrument runway
    ВПП, не оборудованная для точного захода на посадку
    nonprecision approach runway
    ВПП, оборудованная для посадки по приборам
    instrument runway
    ВПП, оборудованная для точного захода на посадку
    precision approach runway
    ВПП, открытая только для взлетов
    takeoff runway
    ВПП, открытая только для посадок
    landing runway
    втулка для установки свечи зажигания
    igniter plug ferrule
    втулка для установки форсунки
    fuel nozzle ferrule
    втулка с устройством для флюгирования
    feathering hub
    выделение канала для связи
    channel assignment
    выемка для ниши колеса
    wheel well cavity
    выруливание на исполнительный старт для взлета
    1. takeoff taxiing
    2. taxiing to takeoff position выставка технического оборудования для обслуживания воздушных судов
    aircraft maintenance engineering exhibition
    галерея для подачи грузов
    loading finder
    гидроподъемник для воздушного судна
    aircraft hydraulic jack
    гидросистема для обслуживания вспомогательных устройств
    utility hydraulic system
    горловина для заправки
    fil opening
    гребень для ограничения пограничного слоя
    boundary-layer fence
    груз для воздушной перевозки
    air cargo
    данные для опознавания
    identification data
    доворот для коррекции направления полета
    flight corrective turn
    домкрат для замены
    change jack
    домкрат для замены колеса
    wheel jack
    заборник воздуха для надува топливных баков от скоростного напора
    ram air assembly
    зажим для установки поршневых колец
    piston ring clamp
    закрытая для полетов ВПП
    idle runway
    закрытая для эксплуатации ВПП
    closed runway
    запас масла для флюгирования
    feathering oil reserve
    запасной люк для выхода
    emergency exit hatch
    запасные части для воздушного судна
    aircraft spare part
    защитная зона для полетов вертолетов
    helicopter protected zone
    зона для транзитных пассажиров
    transit passenger area
    зона ожидания для визуальных полетов
    visual holding point
    информационный сборник для авиационных специалистов
    airman's information manual
    информация для наведения
    guidance information
    камера для хранения багажа
    baggage locker
    карта для прокладывания курса
    plotting chart
    карусель для выдачи
    reclaim unit
    кислород для дыхания
    breathing oxygen
    ключ для стыковки крыла
    wing butting wrench
    количество топлива, требуемое для взлета
    takeoff fuel
    комплект оборудования для заправки и слива топлива
    refuelling unit
    комплект оборудования для удаления воздушного судна
    aircraft recovery kit
    комплект строп для подъема
    hoist slings
    (грузов) контейнер для перевозки грузов и багажа на воздушном судне
    aircraft container
    контейнер для смешанной перевозки
    intermodal container
    контролируемое воздушное пространство предназначенное для полетов по приборам
    instrument restricted airspace
    контрольная точка для определения местоположения
    metering fix
    конфигурация для начального этапа
    initial configuration
    коридор для набора высоты
    climb corridor
    крейсерская скорость для полета максимальной дальности
    long-range cruise speed
    крыло с механизацией для обеспечения большей подъемной силы
    high-lift devices wing
    крышка люка для заправки водой
    water servicing cover plate
    летная полоса, оборудованная для полетов по приборам
    instrument strip
    люк для аварийного покидания
    emergency escape hatch
    люк для бесконтейнерной загрузки
    bulk cargo door
    люк для выхода
    escape
    люк для контейнерной загрузки
    cargo container door
    люк для крепления датчика топливомера
    fuel quantity transmitter hatch
    люк для покидания при посадке на воду
    ditching hatch
    лючок для доступа
    access door
    лючок для подхода к приводу
    actuator access
    маневр для избежания конфликтной ситуации
    resolution manoeuvre
    маневр для опознавания
    identification manoeuvre
    маркер для обозначения запрета
    unserviceability marker
    машина для обслуживания кухни
    1. galley service truck
    2. catering truck машина для очистки ВПП
    runway sweeper
    место для разгрузки
    unloading ramp
    место на крыле для выполнения технического обслуживания
    overwing walkway
    место установки домкрата для подъема воздушного судна
    aircraft jacking point
    механизм для создания условий полета в нестабильной атмосфере
    rough air mechanism
    микрометр для внешних размеров
    external micrometer
    микрометр для внутренних размеров
    internal micrometer
    минимум для взлета
    takeoff minima
    минимум для полетов по кругу
    circling minima
    минимум для посадки
    landing minima
    модель для проведения аэродинамических испытаний
    aerodynamic test vehicle
    моечная установка для воздушных судов
    aircraft washing plant
    мощность, необходимая для набора высоты
    climbing power
    муниципальный аэродром для коммерческой авиации
    municipal commercial aerodrome
    наземная установка для запуска
    ground starting unit
    наземное оборудование для обслуживания
    ground service equipment
    непригодный для эксплуатации
    unserviceable
    нецелесообразно для восстановления
    inadvisable to restore
    ниша для колеса
    1. wheel well
    2. whell recess ниша для трапа
    airstairs bay
    оборудование для аварийного приводнения
    ditching equipment
    оборудование для буксировки планера
    glider tow equipment
    оборудование для демонстрационных полетов
    sign towing equipment
    оборудование для загрузки
    1. cargo-loading equipment
    2. loading equipment оборудование для запуска планера
    glider launch equipment
    оборудование для измерения высоты облачности
    ceiling measurement equipment
    оборудование для испытания
    test facilities
    оборудование для крепления груза
    cargo tie-down device
    оборудование для обеспечения захода на посадку
    approach facilities
    оборудование для обнаружения турбулентности
    turbulence detection equipment
    оборудование для обслуживания воздушного судна
    aircraft servicing equipment
    оборудование для обслуживания грузов
    cargo-handling equipment
    оборудование для обслуживания пассажиров
    passenger-handling equipment
    оборудование для полетов в темное время суток
    night-flying equipment
    оборудование для полетов по приборам
    blind flight equipment
    оборудование для снижения шума
    hush kit
    оборудование для технического обслуживания
    maintenance facilities
    объединение для технического обслуживания
    technical pool
    огонь для предотвращения столкновений
    anticollision light
    ориентир для визуальной ориентировки
    visual pinpoint
    отбойный щит для опробования двигателей
    engine check pad
    отверстие для облегчения веса
    lightening hole
    отверстие для отсоса пограничного слоя на крыле
    boundary layer bleed perforation
    открытая для полетов ВПП
    operational runway
    открытый для полетов
    navigable
    отсек для обеспечения доступа
    access trunk
    очистительная машина для ВПП
    runway cleaner
    паз для поршневого кольца
    piston-ring groove
    патрубок обдува для охлаждения
    blast cooling tube
    пауза для подтверждения
    acknowledgement timeout
    переходник для заправки топливом
    1. fueling adapter
    2. jacking adapter перечень необходимого исправного оборудования для полета
    minimum equipment item
    площадка для взлета вертолета
    hoverway
    площадка для ожидания
    holding apron
    площадка для опробования
    run-up area
    площадка для проверки высотомеров
    1. altimeter check location
    2. altimeter checkpoint площадка для списания девиации компаса
    compass base
    площадка для стоянки
    parking bay
    подвижная шкала для установки нуля
    zero adjusting bezel
    подготовка для полетов по приборам
    instrument flight training
    подготовленная для полетов ВПП
    maintained runway
    полет для выполнения наблюдений с воздуха
    1. aerial survey flight
    2. aerial survey operation полет для выполнения работ
    1. aerial work flight
    2. aerial work operation полет для контроля состояния посевов
    crop control flight
    полет для контроля состояния посевов с воздуха
    crop control operation
    полет для ознакомления с местностью
    orientation flight
    полет для оказания медицинской помощи
    aerial ambulance operation
    полет для проверки летных характеристик
    performance flight
    полет для разведки метеорологической обстановки
    meteorological reconnaissance flight
    полет по приборам, обязательный для данной зоны
    compulsory IFR flight
    помещение для предполетного инструктажа экипажей
    airscrew briefing room
    помещение на аэродроме для размещения дежурных экипажей
    aerodrome alert room
    посадка для выполнения обслуживания
    operating stop
    (воздушного судна) предварительный старт для нескольких воздушных судов
    multiple-holding position
    предметы багажа, запрещенные для перевозки
    restricted articles
    прибор для замера ВПП
    Mu-meter
    прибор для замера силы сцепления
    skiddometer
    (на ВПП) прибор для проверки кабины на герметичность
    cabin tightness testing device
    прибор для проверки систем на герметичность
    system leakage device
    пригодность для полета на местных воздушных линиях
    local availability
    пригодный для перевозок
    good for carriage
    пригодный для полета только в светлое время суток
    available for daylight operation
    приспособление для зарядки авиации
    tire inflation device
    приспособление для захвата объектов в процессе полета
    flight pick-up equipment
    приспособление для крепления груза к полу кабины
    tie-down attachment
    приспособление для обслуживания стабилизатора
    stabilizer servicing device
    приспособление для подъема двигателя
    engine lifting device
    приспособление для съемки
    puller
    приспособление для установки колеса
    wheel installation device
    проблесковый маяк для предупреждения столкновений
    anticollision flash beacon
    проблесковый маяк для предупреждения столкновения
    aircraft safety beacon
    проведение работ по снижению высоты препятствий для полетов
    obstacle clearing
    прогноз для авиации общего назначения
    general aviation forecast
    прогноз для верхнего воздушного пространства
    upper-air forecast
    прогноз для конечного аэропорта
    terminal forecast
    размер багаж для бесплатного провоза
    free baggage
    разъем для слива
    drain connector
    располагаемая дистанция разбега для взлета
    takeoff run available
    раствор для заливки швов
    binder
    расходы, связанные с посадкой для стыковки рейсов
    layover expenses
    реактивное воздушное судно для обслуживания местных авиалиний
    feederjet
    резиновый сердечник для уплотнения троса
    cable rubber core
    рейс для оказания помощи
    relief flight
    решетка для забора воздуха
    air grill
    сбор материалов для расследования авиационного происшествия
    accident inquiry
    световое устройство для определения цветоощущения
    color perception lantern
    светосигнальное оборудование аэродрома для обеспечения безопасности
    aerodrome security lighting
    сводка для взлета
    report for takeoff
    сводка погоды для авиалинии
    airway weather report
    связь для управления полетами
    control communication
    серьга для швартовки
    picketing shackle
    (воздушного судна) система бортовых огней для предупреждения столкновения
    anticollision lights system
    скидка для группы
    group discount
    совковый патрубок для забора
    scoop inlet
    создавать опасность для воздушного судна
    endanger the aircraft
    спасательный бортовой канат для пассажиров
    passenger rope
    справочное бюро для пассажиров
    well-care office
    стандарт по шуму для дозвуковых самолетов
    subsonic noise standard
    стапель для сборки воздушного судна
    aircraft fixture
    стационарная установка для обслуживания воздушного судна
    aircraft servicing installation
    створка закрылка для реактивной струи
    flap exhaust gate
    стенд для испытания двигателей
    engine test bench
    стенд для проверки пневмосистемы
    pneumatic test rig
    стойка для обмена валюты
    currency exchange desk
    стремянка для технического обслуживания
    maintenance stand
    таблица для пересчета высоты
    altitude-conversion table
    тариф для беженцев
    refugee fare
    тариф для младенцев
    infant fare
    тариф для моряков
    seaman's fare
    тариф для навалочных грузов
    bulk unitization rate
    тариф для отдельного участка полета
    sectorial fare
    тариф для пары пассажиров
    two-in-one fare
    тариф для перевозки с неподтвержденным бронированием
    standby fare
    тариф для переселенцев
    migrant fare
    тариф для полета в одном направлении
    single fare
    тариф для полетов внутри одной страны
    cabotage fare
    тариф для рабочих
    worker fare
    тариф для специализированной группы
    affinity group fare
    тариф для супружеской пары
    spouse fare
    тариф для членов экипажей морских судов
    ship's crew fare
    тариф для эмигрантов
    emigrant fare
    тариф за перевозку грузов в специальном приспособлении для комплектования
    unit load device rate
    тележка для грузовых поддонов
    pallet dolly
    тележка для заправки гидросистемы
    hydraulic servicing trolley
    тележка для самообслуживания
    self-help trolley
    тележка для транспортировки двигателей
    engine dolly
    топливо для реактивных двигателей
    jet fuel
    транспортные средства для обслуживания воздушного судна
    aircraft service truck's
    трап для посадки
    1. boarding bridge
    2. passenger bridge тренажер для отработки техники пилотирования
    flight procedures trainer
    тренажер для подготовки к полетам по приборам
    instrument flight trainer
    тяга, необходимая для страгивания
    break-away thrust
    унифицированная складирующаяся стремянка для обслуживания
    unified folding maintenance platform
    установка в положение для захода на посадку
    approach setting
    установка для зарядки кислородом
    oxygen charging set
    установка для проверки герметичности кабины
    cabin leak test set
    установка для проверки расходомеров
    flowmeter set
    установка для проверки тахометров
    tachometer test set
    установка для прокачки
    flushing unit
    устройство для взвешивания
    weighting device
    устройство для замера сцепления
    friction test device
    устройство для замера сцепления колес с поверхностью
    surface friction tester
    устройство для измерения воды
    water depth measuring device
    устройство для крепления лопасти
    blade retention mechanism
    устройство для непрерывного замера
    continuous measuring device
    устройство для обнаружения взрывчатых веществ
    explosives detecting device
    устройство для обнаружения оружия
    weapon detecting device
    устройство для перемещения груза
    load transfer device
    устройство для причаливания
    termination device
    устройство для проверки торможения
    braking test device
    устройство для распыления
    dispersion device
    устройство для снижения уровня шума
    noise abatement device
    устройство для создания тяги
    thrust producting device
    устройство для считывания информации
    data reader
    устройство для транспортировки древесины на внешней подвеске
    timber-carrying suspending device
    устройство для уменьшения подъемной силы крыла
    lift dump device
    участок для выруливания
    taxi portion
    флаг для обозначения препятствия
    obstacle flag
    форсажная камера для увеличения тяги
    thrust augmentor
    фрахтование для личных целей
    own-use charter
    центр информации для верхнего района
    upper information center
    цилиндр - подкос для уборки
    retracting strut
    (шасси) чартерный рейс для неспециализированной группы
    nonaffinity group charter
    чартерный рейс для перевозки определенной группы
    closed group charter
    чартерный рейс для перевозки студентов
    student charter
    чартерный рейс для перевозки туристической группы
    travel group charter
    чартерный рейс для перевозки учащихся
    study group charter
    чартерный рейс для специализированной группы
    affinity group charter
    шкала для передачи информации
    reporting scale
    шланг для слива топлива
    defueling hose
    шланг для стравливания воздуха
    air release hose
    шприц для смазки
    oil syringe
    штуцер для проверки наддува на земле
    ground pressurization connection
    штуцер для проверки на земле
    ground testing connection
    щель для отсасывания
    suction slot
    (пограничного слоя) щель для сдува
    blowing slot
    (пограничного слоя) экипаж для перевозки
    ferry crew

    Русско-английский авиационный словарь > для

  • 8 Crampton, Thomas Russell

    [br]
    b. 6 August 1816 Broadstairs, Kent, England
    d. 19 April 1888 London, England
    [br]
    English engineer, pioneer of submarine electric telegraphy and inventor of the Crampton locomotive.
    [br]
    After private education and an engineering apprenticeship, Crampton worked under Marc Brunel, Daniel Gooch and the Rennie brothers before setting up as a civil engineer in 1848. His developing ideas on locomotive design were expressed through a series of five patents taken out between 1842 and 1849, each making a multiplicity of claims. The most typical feature of the Crampton locomotive, however, was a single pair of driving wheels set to the rear of the firebox. This meant they could be of large diameter, while the centre of gravity of the locomotive remained low, for the boiler barrel, though large, had only small carrying-wheels beneath it. The cylinders were approximately midway along the boiler and were outside the frames, as was the valve gear. The result was a steady-riding locomotive which neither pitched about a central driving axle nor hunted from side to side, as did other contemporary locomotives, and its working parts were unusually accessible for maintenance. However, adhesive weight was limited and the long wheelbase tended to damage track. Locomotives of this type were soon superseded on British railways, although they lasted much longer in Germany and France. Locomotives built to the later patents incorporated a long, coupled wheelbase with drive through an intermediate crankshaft, but they mostly had only short lives. In 1851 Crampton, with associates, laid the first successful submarine electric telegraph cable. The previous year the brothers Jacob and John Brett had laid a cable, comprising a copper wire insulated with gutta-percha, beneath the English Channel from Dover to Cap Gris Nez: signals were passed but within a few hours the cable failed. Crampton joined the Bretts' company, put up half the capital needed for another attempt, and designed a much stronger cable. Four gutta-percha-insulated copper wires were twisted together, surrounded by tarred hemp and armoured by galvanized iron wires; this cable was successful.
    Crampton was also active in railway civil engineering and in water and gas engineering, and c. 1882 he invented a hydraulic tunnel-boring machine intended for a Channel tunnel.
    [br]
    Principal Honours and Distinctions
    Vice-President, Institution of Mechanical Engineers. Officier de la Légion d'Honneur (France).
    Bibliography
    1842, British patent no. 9,261.
    1845. British patent no. 10,854.
    1846. British patent no. 11,349.
    1847. British patent no. 11,760.
    1849, British patent no. 12,627.
    1885, British patent no. 14,021.
    Further Reading
    M.Sharman, 1933, The Crampton Locomotive, Swindon: M.Sharman; P.C.Dewhurst, 1956–7, "The Crampton locomotive", Parts I and II, Transactions of the Newcomen Society 30:99 (the most important recent publications on Crampton's locomotives).
    C.Hamilton Ellis, 1958, Twenty Locomotive Men, Shepperton: Ian Allen. J.Kieve, 1973, The Electric Telegraph, Newton Abbot: David \& Charles, 102–4.
    R.B.Matkin, 1979, "Thomas Crampton: Man of Kent", Industrial Past 6 (2).
    PJGR

    Biographical history of technology > Crampton, Thomas Russell

  • 9 гидротехнический туннель

    Универсальный русско-английский словарь > гидротехнический туннель

  • 10 Frost, James

    [br]
    b. late 18th century Finchley (?), London, England
    d. mid-19th century probably New York, USA
    [br]
    English contributor to investigations into the making of hydraulic cements in the early nineteenth century.
    [br]
    As early as 1807 Frost, who was originally a builder and bricklayer in Finchley in north London, was manufacturing Roman Cement, patented by James Parker in 1796, in the Harwich area and a similar cement further south, at Sheerness. In the early 1820s Frost visited Louis J.Vicat (1796–1861) in France. Vicat was a French engineer who began in 1812 a detailed investigation into the properties of various limestones found in France. He later published his conclusions, which were that the best hydraulic lime was that produced from limestone containing clay incorporating silica and alumina. He experimented with adding different clays in varying proportions to slaked lime and calcined the mixture. Benefiting from Vicat's research, Frost obtained a patent in 1822 for what he called British Cement. This patent specified an artificial cement made from limestone and silica, and he calcined chalk with the clay to produce a quick-setting product. This was made at Swanscombe near Northfleet on the south bank of the River Thames. In 1833 the Swanscombe manufactory was purchased by Francis \& White for £3,500 and Frost emigrated to America, setting up practice as a civil engineer in New York. The cement was utilized by Sir Marc Brunel in 1835 in his construction of the Thames Tunnel, and at the same time it was used in building the first all-concrete house at Swanscombe for Mr White.
    [br]
    Further Reading
    A.J.Francis, 1977, The Cement Industry 1796–1914: A History, David \& Charles. C.C.Stanley, 1979, Highlights in the History of Concrete, Cement and Concrete Association.
    DY

    Biographical history of technology > Frost, James

  • 11 канал

    bed радио, canal, bore, cavity, chain, artificial channel, channel, channeling, circuit связь, conduit, cut, duct, ( матрицы или волоки) orifice, hole, pass, conveying passage, flow passage, water passage, passage, path, port, race, channel slot, ( в системах пакетной связи) slot, track кфт., ( передачи данных) trunk вчт., watercourse
    * * *
    кана́л м.
    кана́л закры́т или откры́т для прохо́да судо́в — the canal is closed or opened to traffic
    облицо́вывать кана́л — line a canal
    осуществля́ть судохо́дство по кана́лу — navigate a canal
    кана́л подаё́т во́ду … — a canal conveys water from … to …
    по кана́лу перево́зится ( столько-то) [m2]тонн гру́за — the canal handles [carries] (so many) tons of cargo
    2. свз. channel
    выделя́ть кана́л — drop (off) a channel
    занима́ть кана́л — capture a channel
    кана́л мо́жно уплотни́ть телефо́нным и телегра́фным кана́лами — a telephone channel may be combined with telegraph channels
    организова́ть кана́л — derive a channel
    освобожда́ть кана́л — relinquish a channel
    ответвля́ть кана́л — drop a channel
    отводи́ть [назнача́ть] кана́л — assign [allocate] a channel
    перегружа́ть кана́л — congest a channel
    кана́л поражё́н — the channel is disturbed [perturbed, victimized]
    разделя́ть кана́лы — separate channels
    кана́л свобо́ден — the channel is clear
    укла́дывать кана́лы — insert (blocks of) channels into proper position in the base-band frequency spectrum
    уплотня́ть кана́л с временны́м разделе́нием — time-multiplex a channel, use a channel on a time-division multiplex basis
    уплотня́ть кана́л с часто́тным разделе́нием — frequency-multiplex a channel, use a channel on a frequency-division multiplex basis
    кана́л явля́ется исто́чником перехо́дных поме́х — this is a disturbing [offending] channel
    5. ( проход) conduit, duct, passage
    абоне́нтский кана́л — local [subscriber's] loop
    безнапо́рный кана́л — gravity-flow conduit
    кана́л без обра́тной свя́зи — one-way channel
    вентиляцио́нный кана́л
    1. air [ventilation, cooling] duct
    2. ( линейный) venting channel
    вертика́льный кана́л ( мартена) — down-take, uptake
    вертика́льный, возду́шный кана́л ( мартена) — air uptake
    водоотво́дный кана́л — catch drain, drainage canal
    водопрово́дный кана́л — water-supply [water-conveying] canal
    водосли́вный кана́л — overflow canal
    волочи́льный кана́л метал.die hole
    кана́л воспроизведе́ния — reproducing channel
    впускно́й кана́л — admission [intake, inlet, induction] port
    выпускно́й кана́л — exhaust [outlet] port
    вытяжно́й кана́л
    1. exhaust duct
    2. горн. foul air flue
    газоотводя́щий кана́л — gas-escape channel
    деривацио́нный кана́л — diversion canal
    кана́л для прово́док стр.service duct
    кана́л для сбро́са па́водка — floodway, flood control canal
    кана́л для уравне́ния давле́ния — pressure equalizing passage
    зали́вочный кана́л пласт.sprue channel
    кана́л за́писи — recording channel
    кана́л запро́са навиг.interrogation link
    кана́л звуково́го сопровожде́ния тлв.sound channel
    зерка́льный кана́л радиоimage channel
    золово́й кана́л тепл.sluiceway
    кана́л изображе́ния тлв.video channel
    искрово́й кана́л физ.spark channel
    ка́бельный кана́л — cable duct
    ка́бельный, бето́нный кана́л — concrete trough
    кана́л ка́бельной канализа́ции — cable duct
    кла́панный кана́л автоvalve port
    кана́л ко́ксовой батаре́и, подо́вый — sole flue
    кана́л ко́ксовой пе́чи, перекидно́й — crossover flue
    контро́льный кана́л ( системы передачи по ЛЭП) — pilot channel
    лесоспла́вный кана́л ( в составе гидроузла) — log chute
    лесоспла́вный кана́л слу́жит для про́пуска сплавно́го ле́са че́рез плоти́ну — the log chute puts logs through the dam
    ли́тниковый кана́л
    1. литейн. gate
    2. пласт. sprue channel
    лопа́точный кана́л ( турбины) — blade passage
    маслопрово́дный кана́л авто — oil duct, oil passage
    ма́сляный кана́л двс.oil gallery
    межлопа́точный кана́л ( турбины) — blade passage
    мелиорати́вный кана́л — soil-reclamation canal
    морско́й кана́л — maritime canal
    мультипле́ксный кана́л — multiplexor channel
    мультипле́ксный кана́л мо́жет рабо́тать в мультипле́ксном или монопо́льном режи́ме — the multiplexor channel can operate in the multiplex or burst modes
    мультипле́ксный кана́л освобожда́ет проце́ссор от непосре́дственной свя́зи с устро́йствами вво́да-вы́вода — the multiplexor channel relieves the processor of communicating directly with I/ O devices
    мультипле́ксный кана́л осуществля́ет непосре́дственное управле́ние устро́йствами вво́да-вы́вода — the multiplexor channel is the direct controller of I/ O devices
    мультипле́ксный кана́л рабо́тает по запро́сам — the multiplexor channel operates on demand
    мультипле́ксный, ба́йтовый кана́л — byte multiplexor channel
    мультипле́ксный, бло́ковый кана́л — block multiplexor channel
    кана́л мундштука́ пласт.die channel
    кана́л наса́дки регенера́тора тепл.checker flue
    обводни́тельный кана́л — water supply canal
    обводно́й кана́л гидр.by-pass (channel)
    объё́мный кана́л полупр.bulk channel
    ороси́тельный кана́л — irrigation [irrigating] channel
    ороси́тельный, магистра́льный кана́л — irrigating main
    осуши́тельный кана́л — drainage channel
    кана́л переда́чи да́нных — data (communication) channel
    кана́л переда́чи да́нных, дискре́тный — digital data (communication) channel
    кана́л переда́чи да́нных, подтона́льный — subvoice grade channel
    кана́л переда́чи да́нных тона́льной частоты́ — voice-band data (communication) channel
    кана́л переда́чи да́нных, цифрово́й — digital data (communication) channel
    перепускно́й кана́л — by-pass (channel)
    кана́л пе́чи, дымово́й — waste gas [chimney] flue
    кана́л пе́чи, отводя́щий — offtake
    кана́л пе́чи, охлажда́ющий — cooling flue
    подводя́щий кана́л — intake conduit
    кана́л поддо́на метал.runner
    подхо́дный кана́л гидр.approach channel
    кана́л полево́го транзи́стора — channel of a field-effect transistor
    прито́чный кана́л — influent channel, intake duct
    прямо́й кана́л ( в передаче данных) — private line
    пылеосади́тельный кана́л — dust-collecting [precipitating] duct
    кана́л рабо́чей решё́тки ( турбины) — blade passage
    радиореле́йный кана́л — radio-relay [microwave] channel
    кана́л радиосвя́зи, веща́тельный — broadcast channel
    радиотелеметри́ческий кана́л — radiotelemetry channel
    кана́л реле́йной защи́ты — retay-protection channel
    кана́л реле́йной защи́ты, блокиро́вочный — carrier-blocking channel
    кана́л реле́йной защи́ты телеблокиро́вки — pilot channel
    самотё́чный кана́л гидр.gravity-flow conduit
    сбросно́й кана́л гидр.escape (discharge) canal
    кана́л свя́зи — communication channel
    набира́ть кана́л свя́зи — set up a channel
    кана́л свя́зи, авиацио́нный — aeronautical service channel
    кана́л свя́зи без па́мяти — memoryless channel
    кана́л свя́зи без поме́х — noiseless channel
    кана́л свя́зи, бина́рный симметри́чный — symmetric binary channel
    кана́л свя́зи, высокочасто́тный — carrier channel, carrier link
    кана́л свя́зи дежу́рного приё́ма ав.guard channel
    кана́л свя́зи, дискре́тный — discrete [digital] channel
    кана́л свя́зи, коммути́руемый — switched [dial-up] circuit, switched [dial-up] channel
    кана́л свя́зи на орбита́льных дипо́лях — dipole channel
    кана́л свя́зи, некоммути́руемый — leased [rented, unswitched] channel
    кана́л свя́зи, односторо́нний — one-way channel
    кана́л свя́зи, опти́ческий — optical channel
    кана́л свя́зи по ли́нии электропереда́чи — power-line-carrier [p.l.c.] channel
    кана́л свя́зи с аддити́вной поме́хой — additive-noise channel
    кана́л свя́зи с асинхро́нным уплотне́нием — asynchronously multiplexed channel
    кана́л свя́зи с временны́м разделе́нием — time-shared channel
    кана́л свя́зи, си́мплексный — simplex [one-way] channel
    кана́л свя́зи, служе́бный — engineering channel, engineering circuit
    кана́л свя́зи с па́мятью — channel with memory
    кана́л свя́зи с поме́хами — noisy channel
    кана́л свя́зи с часто́тным разделе́нием — frequency-division multiplexed channel
    кана́л свя́зи с часто́тным уплотне́нием — frequency-division-multiplex line
    кана́л свя́зи, уплотнё́нный — multiplexed channel
    селе́кторный кана́л ( в системах обработки и передачи информации) — selector channel
    селе́кторный кана́л позволя́ет подключа́ть к проце́ссору до, напр. 5 устро́йств вво́да-вы́вода — the selector channel attaches up to, e. g., 5 I/ O devices
    селе́кторный кана́л рабо́тает в монопо́льном режи́ме — the selector channel operates in the burst mode
    сливно́й кана́л гидр. — escape [discharge] channel
    кана́л с неукреплё́нными отко́сами — unlined canal
    кана́л с обра́тной свя́зью — feedback [two-way] channel
    соплово́й кана́л ( турбины) — nozzle passage
    сто́чный кана́л — escape canal, house drain
    судохо́дный кана́л — navigation [navigable, ship] canal
    телевизио́нный кана́л — television channel
    телегра́фный кана́л — telegraph channel
    телегра́фный кана́л по сре́дним то́чкам телефо́нных цепе́й — simplexed [superimposed] telegraph circuit
    телеметри́ческий кана́л — telemeter(ing) channel
    телефо́нный, высокочасто́тный кана́л — carrier telephone channel
    тона́льный кана́л — voice-frequency [v.f.] channel
    то́почный кана́л — heating flue
    кана́л управле́ния — control channel
    фи́льмовый кана́л ( кинокамеры или кинопроектора) — film gate
    форму́ющий кана́л пласт.moulding channel
    шла́ковый кана́л тепл.sluiceway
    шлюзо́ванный кана́л — lock canal
    кана́л экстру́дера, рабо́чий — screw channel of an extruder
    энергети́ческий кана́л — hydraulic-power canal
    эпитаксиа́льный кана́л полупр.epitaxial channel
    кана́л я́дерного реа́ктора, авари́йный — safety channel
    кана́л я́дерного реа́ктора, боково́й — by-pass, side channel
    кана́л я́дерного реа́ктора для (вы́вода) пучка́ — beam port, beam hole, beam tube
    кана́л я́дерного реа́ктора для облуче́ния — exposure [radiation] hole, irradiation tunnel, irradiation port
    кана́л я́дерного реа́ктора для образцо́в — sample hole
    кана́л я́дерного реа́ктора для прибо́ров — instrumental hole
    кана́л я́дерного реа́ктора, рабо́чий — reactor fuel tube, reactor fuel channel
    кана́л я́дерного реа́ктора, технологи́ческий — reactor fuel channel
    кана́л я́дерного реа́ктора, эксперимента́льный — experimental port, test [experimental] hole

    Русско-английский политехнический словарь > канал

  • 12 гидроканал

    Универсальный русско-английский словарь > гидроканал

  • 13 Trevithick, Richard

    [br]
    b. 13 April 1771 Illogan, Cornwall, England
    d. 22 April 1833 Dartford, Kent, England
    [br]
    English engineer, pioneer of non-condensing steam-engines; designed and built the first locomotives.
    [br]
    Trevithick's father was a tin-mine manager, and Trevithick himself, after limited formal education, developed his immense engineering talent among local mining machinery and steam-engines and found employment as a mining engineer. Tall, strong and high-spirited, he was the eternal optimist.
    About 1797 it occurred to him that the separate condenser patent of James Watt could be avoided by employing "strong steam", that is steam at pressures substantially greater than atmospheric, to drive steam-engines: after use, steam could be exhausted to the atmosphere and the condenser eliminated. His first winding engine on this principle came into use in 1799, and subsequently such engines were widely used. To produce high-pressure steam, a stronger boiler was needed than the boilers then in use, in which the pressure vessel was mounted upon masonry above the fire: Trevithick designed the cylindrical boiler, with furnace tube within, from which the Cornish and later the Lancashire boilers evolved.
    Simultaneously he realized that high-pressure steam enabled a compact steam-engine/boiler unit to be built: typically, the Trevithick engine comprised a cylindrical boiler with return firetube, and a cylinder recessed into the boiler. No beam intervened between connecting rod and crank. A master patent was taken out.
    Such an engine was well suited to driving vehicles. Trevithick built his first steam-carriage in 1801, but after a few days' use it overturned on a rough Cornish road and was damaged beyond repair by fire. Nevertheless, it had been the first self-propelled vehicle successfully to carry passengers. His second steam-carriage was driven about the streets of London in 1803, even more successfully; however, it aroused no commercial interest. Meanwhile the Coalbrookdale Company had started to build a locomotive incorporating a Trevithick engine for its tramroads, though little is known of the outcome; however, Samuel Homfray's ironworks at Penydarren, South Wales, was already building engines to Trevithick's design, and in 1804 Trevithick built one there as a locomotive for the Penydarren Tramroad. In this, and in the London steam-carriage, exhaust steam was turned up the chimney to draw the fire. On 21 February the locomotive hauled five wagons with 10 tons of iron and seventy men for 9 miles (14 km): it was the first successful railway locomotive.
    Again, there was no commercial interest, although Trevithick now had nearly fifty stationary engines completed or being built to his design under licence. He experimented with one to power a barge on the Severn and used one to power a dredger on the Thames. He became Engineer to a project to drive a tunnel beneath the Thames at Rotherhithe and was only narrowly defeated, by quicksands. Trevithick then set up, in 1808, a circular tramroad track in London and upon it demonstrated to the admission-fee-paying public the locomotive Catch me who can, built to his design by John Hazledine and J.U. Rastrick.
    In 1809, by which date Trevithick had sold all his interest in the steam-engine patent, he and Robert Dickinson, in partnership, obtained a patent for iron tanks to hold liquid cargo in ships, replacing the wooden casks then used, and started to manufacture them. In 1810, however, he was taken seriously ill with typhus for six months and had to return to Cornwall, and early in 1811 the partners were bankrupt; Trevithick was discharged from bankruptcy only in 1814.
    In the meantime he continued as a steam engineer and produced a single-acting steam engine in which the cut-off could be varied to work the engine expansively by way of a three-way cock actuated by a cam. Then, in 1813, Trevithick was approached by a representative of a company set up to drain the rich but flooded silver-mines at Cerro de Pasco, Peru, at an altitude of 14,000 ft (4,300 m). Low-pressure steam engines, dependent largely upon atmospheric pressure, would not work at such an altitude, but Trevithick's high-pressure engines would. Nine engines and much other mining plant were built by Hazledine and Rastrick and despatched to Peru in 1814, and Trevithick himself followed two years later. However, the war of independence was taking place in Peru, then a Spanish colony, and no sooner had Trevithick, after immense difficulties, put everything in order at the mines then rebels arrived and broke up the machinery, for they saw the mines as a source of supply for the Spanish forces. It was only after innumerable further adventures, during which he encountered and was assisted financially by Robert Stephenson, that Trevithick eventually arrived home in Cornwall in 1827, penniless.
    He petitioned Parliament for a grant in recognition of his improvements to steam-engines and boilers, without success. He was as inventive as ever though: he proposed a hydraulic power transmission system; he was consulted over steam engines for land drainage in Holland; and he suggested a 1,000 ft (305 m) high tower of gilded cast iron to commemorate the Reform Act of 1832. While working on steam propulsion of ships in 1833, he caught pneumonia, from which he died.
    [br]
    Bibliography
    Trevithick took out fourteen patents, solely or in partnership, of which the most important are: 1802, Construction of Steam Engines, British patent no. 2,599. 1808, Stowing Ships' Cargoes, British patent no. 3,172.
    Further Reading
    H.W.Dickinson and A.Titley, 1934, Richard Trevithick. The Engineer and the Man, Cambridge; F.Trevithick, 1872, Life of Richard Trevithick, London (these two are the principal biographies).
    E.A.Forward, 1952, "Links in the history of the locomotive", The Engineer (22 February), 226 (considers the case for the Coalbrookdale locomotive of 1802).
    PJGR

    Biographical history of technology > Trevithick, Richard

См. также в других словарях:

  • Tunnel — This article is about underground passages. For other uses, see Tunnel (disambiguation). Underground tunnel for heatpipes between Rigshospitalet and Amagerværket in Denmark …   Wikipedia

  • Engineering Projects — ▪ 1995 Introduction BRIDGES        Notable Engineering Projects(For Notable Engineering Projects in work, see Table (Notable Engineering Projects).)       As the decade of the 1990s reached its midpoint, the limits to bridge design were being… …   Universalium

  • Tunnel boring machine — A tunnel boring machine that was used at Yucca Mountain nuclear waste repository A tunnel boring machine (TBM) also known as a mole , is a machine used to excavate tunnels with a circular cross section through a variety of soil and rock strata.… …   Wikipedia

  • civil engineering — the work or profession of a civil engineer. * * * Profession of designing and executing structural works that serve the general public, including bridges, canals, dams, harbors, lighthouses, roads, tunnels, and environmental works (e.g., water… …   Universalium

  • List of Historic Mechanical Engineering Landmarks — The following is a list of Historic Mechanical Engineering Landmarks as designated by the American Society of Mechanical Engineers since it began the program in 1971. The designation is granted to existing artifacts or systems representing a… …   Wikipedia

  • List of Historic Civil Engineering Landmarks — The following is a list of Historic Civil Engineering Landmarks as designated by the American Society of Civil Engineers since it began the program in 1964. The designation is granted to projects, structures, and sites in the United States… …   Wikipedia

  • List of historic civil engineering landmarks — The following is a partial list of historic civil engineering landmarks as designated by the American Society of Civil Engineers since it began the program in 1964. The designation is granted to projects, structures, and sites in the United… …   Wikipedia

  • Mechanical Engineering Heritage (Japan) — Myriad year Japanese clock, Heritage No. 22 The Mechanical Engineering Heritage (Japan) (機械遺産, kikaiisan …   Wikipedia

  • Jack Lynch Tunnel — The Jack Lynch Tunnel (named after the former Taoiseach Jack Lynch), or Tollán Seán Ó Loinsigh in Irish, is an immersed tube tunnel and an integral part of the N25 southern ring road of Cork in Ireland. It takes the road under the River Lee.… …   Wikipedia

  • Aerospace engineering — Aerospace Engineer NASA engineers, the ones depicted in the film Apollo 13, worked diligently to protect the lives of the astronauts on the mission. Occupation Names engineer aerospace engineer …   Wikipedia

  • Lombardi Engineering Ltd — Lombardi Engineering Ltd. is a Swiss civil engineering company based in Minusio, Locarno district. It was established in 1989. It is the successor to Giovanni Lombardi Ph. D. Consulting Engineers which was established in 1955 by Giovanni Lombardi …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»